A note on the angular momentum analysis $\mathrm{SU}(2 \mathrm{l}+1) \supset \mathrm{O}^{+}(2 \mid+1) \supset \mathrm{O}^{+}(3)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1974 J. Phys. A: Math. Nucl. Gen. 7449
(http://iopscience.iop.org/0301-0015/7/4/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.87
The article was downloaded on 02/06/2010 at 04:57

Please note that terms and conditions apply.

A note on the angular momentum analysis $\mathrm{SU}(\mathbf{2 l + 1}) \supset \mathrm{O}^{+}(\mathbf{2 l + 1}) \supset \mathrm{O}^{+}(3)$

L S R K Prasad, M Kondala Rao and P V Madhusudana Rao
Department of Applied Mathematics, Andhra University, Waltair-530003, India

Received 23 August 1973

$$
\begin{aligned}
& \text { Abstract. A method for carrying out the angular momentum analysis } \\
& \qquad \mathrm{SU}(2 l+1) \supset \mathrm{O}^{+}(2 l+1) \supset \mathrm{O}^{+}(3) \\
& \text { is discussed using Littlewood's } S \text { function technique. Results for } l=4 \text { are tabulated. }
\end{aligned}
$$

1. Introduction

Syamala Devi (1972) discussed the problem of finding the $\mathrm{O}^{+}(3)$ content of an irreducible representation (IR) of $\operatorname{SU}(2 l+1)$ using Littlewood's (1944) 'new multiplication' of S functions. A method of carrying out the angular momentum analysis

$$
\mathrm{SU}(2 l+1) \supset \mathrm{O}^{+}(2 l+1) \supset \mathrm{O}^{+}(3)
$$

was discussed in Hamermesh (1962) and explicit results are tabulated for the cases $l=2$ and $l=3$. Here we discuss the same angular momentum analysis by using S functions and their 'new multiplication', known as the 'plethysm operation'.

2. Formulation of the method

Using theorem II of Littlewood (1950) we first find the $\mathrm{O}^{+}(2 l+1)$ content of an IR of $\operatorname{SU}(2 l+1)$. Let [λ] by any such IR of $\mathrm{O}^{+}(2 l+1)$ contained in an IR of $\operatorname{SU}(2 l+1)$. We then express [λ] in terms of the S functions using theorem I of Littlewood (1950):

$$
\begin{equation*}
[\lambda]=\{\lambda\}+\sum(-1)^{p / 2} g_{y \eta}\{\eta\}, \tag{1}
\end{equation*}
$$

summed for all S functions of the set $\{\gamma\}$ such that $\{\lambda\}$ appears in a product $\{\gamma\}\{\eta\}$ with coefficient $g_{y n \lambda},(\gamma)$ being a partition of p. The $\mathrm{O}^{+}(3)$ content of each IR of $\operatorname{SU}(2 l+1)$ appearing in the right-hand side of (1) is then found by calculating the plethysms $\{2 l\} \otimes\{\lambda\}$ and the various $\{2 l\} \otimes\{\eta\}$. There are various methods of calculating the plethysms. Out of these we find the following formula (Littlewood 1958) as a more straightforward one, well suited to our present needs:

$$
\begin{equation*}
\{n\} \otimes\{\lambda\}=\prod_{i<j=2}^{n+1}\left(\frac{p^{\lambda_{i}+j}-p^{\lambda_{j}+i}}{p^{j}-p^{i}}\right) \tag{2}
\end{equation*}
$$

Taking the algebraic sum of these $\mathrm{O}^{+}(3)$ contents, coefficients being prescribed by the right-hand side of (1), we get the $\mathrm{O}^{+}(3)$ content of the IR [λ] of $\mathrm{O}^{+}(2 l+1)$. Though this
method is quite general in nature, actual calculations of the pethysms will become laborious when we go to higher l values. As far as we know the literature does not contain the case of $l=4$. We therefore give the angular momentum analysis $\mathrm{SU}(9) \supset \mathrm{O}^{+}(9) \supset \mathrm{O}^{+}(3)$ in table 1. The modification rules required in the table are taken from Newell (1951). Dots (. .) are used in the $\mathrm{O}^{+}(3)$ column against some irs of $\mathrm{O}^{+}(9)$ to indicate that those $\mathrm{O}^{+}(3)$ contents are already specified above in the table.

Table 1. Angular momentum analysis $\mathrm{SU}(9) \supset \mathrm{O}^{+}(9) \supset \mathrm{O}^{+}(3)$

r	SU(9)	$\mathrm{O}^{+}(9)$	$\mathrm{O}^{+}(3)$
0	$\{0\}$	[0]	0
1	\{1\}	[1]	4
2	\{2\}	[2]	8, 6, 4, 2
		[0]	
	$\left\{1^{2}\right\}$	[12]	7, 5, 3, 1
3	\{21\}	[21]	$11,10,9,8^{2}, 7^{2}, 6^{2}, 5^{3}, 4^{2}, 3^{2}, 2^{2}, 1$
		[10]	\ldots..
	$\left\{1^{3}\right\}$	[1^{3}]	9, 7, 6, 5, 4, $3^{2}, 1$
4	$\left\{2^{2}\right\}$	[2^{2}]	14, $12^{2}, 11,10^{3}, 9^{2}, 8^{4}, 7^{3}, 6^{5}, 5^{3}, 4^{5}, 3^{2}, 2^{4}, 0^{2}$
		[20]	\ldots 吅
		[0]	\cdots..
	\{ 21^{2} \}	[212]	13, $12,11^{2}, 10^{2}, 9^{4}, 8^{4}, 7^{3}, 6^{5}, 5^{6}, 4^{5}, 3^{5}, 2^{3}, 1^{3}$
		$\left[1^{2}\right]$	
	$\left\{1^{4}\right\}$	[14]	10, 8, 7, $6^{2}, 5,4^{2}, 3,2^{2}, 0$
5	\{2 $\left.{ }^{2} 1\right\}$	[$\left.2^{2} 1\right]$	$\begin{aligned} & 16,15,14^{2}, 13^{3}, 12^{5}, 11^{5}, 10^{8}, 9^{9}, 8^{11}, 7^{11}, 6^{13}, 5^{11} \\ & 4^{12}, 3^{9}, 2^{8}, 1^{4}, 0^{3} \end{aligned}$
		[21]	\cdots -
		[1]	$\cdots{ }^{\cdots}$
	$\left\{21^{3}\right\}$	$\left[21^{3}\right]$	$14,13,12^{2}, 11^{3}, 10^{4}, 9^{5}, 8^{7}, 7^{7}, 6^{8}, 5^{8}, 4^{8}, 3^{6}, 2^{6}, 1^{3}, 0$
		[13]	. \cdot.
	$\left\{1^{5}\right\} \equiv\left\{1^{4}\right\}$	[14]	\cdots l ${ }^{\text {a }}$
6	$\left\{2^{3}\right\}$	$\left[2^{3}\right]$	$\begin{aligned} & 18,16^{2}, 15^{2}, 14^{3}, 13^{4}, 12^{7}, 11^{6}, 10^{10}, 9^{10}, 8^{12}, 7^{11}, 6^{15} \\ & 5^{10}, 4^{13}, 3^{9}, 2^{8}, 1^{3}, 0^{4} \end{aligned}$
		[2^{2}]	,
		[2]	\cdots -
		[0]	...
	$\left\{2^{2} 1^{2}\right\}$	$\left[2^{2} 1^{2}\right]$	$\begin{aligned} & 17,16,15^{3}, 14^{3}, 13^{6}, 12^{7}, 11^{11}, 10^{12}, 9^{16}, 8^{16}, 7^{20} \\ & 6^{18}, 5^{21}, 4^{16}, 3^{17}, 2^{10}, 1^{9}, 0 \end{aligned}$
		$\left[21^{2}\right]$	\cdots -
		[12 ${ }^{2}$]	.
	$\left\{21^{4}\right\}$	$\left[21^{4}\right] \equiv\left[21^{3}\right]$...
		[14]	...
	$\left\{1^{6}\right\} \equiv\left\{1^{3}\right\}$	[13]	
7	$\left\{2^{3} 1\right\}$	$\left[2^{3} 1\right]$	$\begin{aligned} & 19,18,17^{2}, 16^{3}, 15^{5}, 14^{7}, 13^{10}, 12^{12}, 11^{16}, 10^{18}, 9^{22} \\ & 8^{23}, 7^{26}, 6^{25}, 5^{25}, 4^{22}, 3^{20}, 2^{14}, 1^{10}, 0^{2} \end{aligned}$
		[$\left.2^{2} 11\right]$	\cdots -
		[21]	...
		$[1]$...
	$\left\{2^{2} 1^{3}\right\}$	$\left[2^{2} 1^{3}\right] \equiv\left[\begin{array}{lll}2^{2} & 1^{2}\end{array}\right]$	\ldots
		[213]	\ldots
		$\left[1^{3}\right]$...
	$\left\{21^{5}\right\}$	$\left[21^{5}\right] \equiv\left[21^{2}\right]$...
		$\left[1^{5}\right] \equiv\left[1^{4}\right]$	\ldots
	$\left\{1^{7}\right\} \equiv\left\{1^{2}\right\}$	$\left[1^{2}\right]$	\cdots

Table 1-continued

r	SU(9)	$\mathrm{O}^{+}(9)$	$\mathrm{O}^{+}(3)$
8	$\left\{2^{4}\right\}$	[24]	$\begin{aligned} & 20,18,17^{2}, 16^{3}, 15^{3}, 14^{6}, 13^{6}, 12^{9}, 11^{10}, 10^{13}, 9^{12}, \\ & 8^{17}, 7^{14}, 6^{16}, 5^{15}, 4^{15}, 3^{9}, 2^{11}, 1^{4}, 0^{3} \end{aligned}$
		$\left[2^{3}\right]$	\ldots
		$\left.{ }^{2}{ }^{2}\right]$...
		[2]	...
		[0]	...
	$\left\{2^{3} 1^{2}\right\}$	$\left[2^{3} 1^{2}\right] \equiv\left[2^{3} 1\right]$	\ldots
		[$\left.2^{2} 1^{2}\right]$...
		[211^{2}]	...
		[1^{2}]	\ldots
	$\left\{2^{2} 1^{4}\right\}$	$\left[2^{2} 1^{4}\right] \equiv\left[2^{2} 1\right]$...
		$\left[21^{4}\right] \equiv\left[21^{3}\right]$...
		[14].	...
	$\left\{21^{6}\right\}$	$\left[21^{6}\right] \equiv[21]$...
		$\left[1^{6}\right] \equiv\left[1^{3}\right]$...
	$\left\{1^{8}\right\} \equiv\{1\}$	[1]	...
9	$\left\{2^{4} 1\right\}$	$\left[2^{4} 1\right] \equiv\left[2^{4}\right]$	\ldots
		$\left[2^{3} 1\right]$ [...
		[$\left.2^{2} 1\right]$...
		[21]	...
		[1]	...
	$\left\{2^{3} 1^{3}\right\}$	$\left[2^{3} 1^{3}\right] \equiv\left[2^{3}\right]$...
		$\left[2^{2} 1^{3}\right] \equiv\left[2^{2} 1^{2}\right]$...
		[$\left.21{ }^{3}\right]$...
		[13] ${ }^{3}$]	...
	$\left\{2^{2} 1^{5}\right\}$	$\left[2^{2} 1^{5}\right] \equiv\left[2^{2}\right]$...
		$\left[21^{5}\right] \equiv\left[21^{2}\right]$...
		$\left[1^{5}\right] \equiv\left[1^{4}\right]$...
	$\{2.17$	$\left[21^{7}\right] \equiv[2]$	\ldots
		$\left[1^{7}\right] \equiv\left[1^{2}\right]$	\ldots
	$\left\{1^{9}\right\} \equiv\{0\}$	[0]	...

Acknowledgments

The authors consider it to be their pleasant duty to thank Professor T S G Krishnamurthy for his interest in this work. Two of the authors (MKR and PVMR) are grateful to the UGC of India for providing them with financial assistance during the course of this work.

References

Hamermesh M 1962 Group Theory and its Application to Physical Problems (Reading, Massachusetts: Addison-Wesley) chap 11
Littlewood D E 1944 Phil. Trans. R. Soc. A 239 305-65
_- 1950 The Theory of Group Characters and Matrix Representations of Groups (London: Oxford University
Press) chap 11

- 1958 A University Algebra (London: Heinemann) chap 16

Newell M J 1951 Proc. R. Irish Acad. A 54 153-64
Syamala Devi V 1972 J. math. Phys. 13 28-33

